%I #18 Sep 17 2024 20:40:50
%S 1,0,1,0,0,1,0,-1,0,1,0,0,-2,0,1,0,0,0,-3,0,1,0,0,1,0,-4,0,1,0,0,0,3,
%T 0,-5,0,1,0,0,0,0,6,0,-6,0,1,0,0,0,-1,0,10,0,-7,0,1,0,0,0,0,-4,0,15,0,
%U -8,0,1,0,0,0,0,0,-10,0,21,0,-9,0,1,0,0,0,0,1,0,-20,0,28,0,-10,0,1
%N Riordan array (1, x*(1-x^2)).
%C T(2n,n) is a signed aerated version of C(2n,n).
%C Inverse is A124305.
%H G. C. Greubel, <a href="/A124304/b124304.txt">Rows n = 0..50 of the triangle, flattened</a>
%H Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Janjic/janjic73.html">Binomial Coefficients and Enumeration of Restricted Words</a>, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
%F T(n, k) = Sum_{j=0..n} C(k,k-j)*C(k,n-k-j)*(-1)^j.
%F T(n, k) = C(k,(n-k)/2)*(-1)^((n-k)/2)*(1 + (-1)^(n-k))/2.
%F Sum_{k=0..n} T(n, k) = A050935(n+2).
%F Sum_{k=0..floor(n/2)} T(n-k, k) = A014021(n).
%F T(2*n, n) = (1 - 2*0^(n+2 mod 4))*A126869(n).
%F From _G. C. Greubel_, Aug 18 2023: (Start)
%F T(2*n-1, n-1) = (1 - 2*0^(n+1 mod 4))*A138364(n-1).
%F T(2*n-1, n+1) = (1 - 2*0^(n mod 4))*((1+(-1)^n)/2)*A002054(floor(n/2)).
%F Sum_{k=0..n} (-1)^k*T(n, k) = A176971(n+3).
%F Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1 - 2*0^(n+2 mod 4))*A079977(n).
%F G.f.: 1/(1 - x*y*(1-x^2)). (End)
%e Triangle begins
%e 1;
%e 0, 1;
%e 0, 0, 1;
%e 0, -1, 0, 1;
%e 0, 0, -2, 0, 1;
%e 0, 0, 0, -3, 0, 1;
%e 0, 0, 1, 0, -4, 0, 1;
%e 0, 0, 0, 3, 0, -5, 0, 1;
%e 0, 0, 0, 0, 6, 0, -6, 0, 1;
%t A124304[n_, k_]:= Binomial[k, (n-k)/2]*(-1)^((n-k)/2)*(1+(-1)^(n-k))/2;
%t Table[A124304[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Aug 18 2023 *)
%o (Magma)
%o A124304:= func< n,k | (&+[(-1)^j*Binomial(k,k-j)*Binomial(k,n-k-j) : j in [0..n]]) >;
%o [A124304(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Aug 18 2023
%o (SageMath)
%o def A124304(n, k): return binomial(k, (n-k)//2)*(-1)^((n-k)//2)*(1+(-1)^(n-k))/2
%o flatten([[A124304(n,k) for k in range(n+1)] for n in range(16)]) # _G. C. Greubel_, Aug 18 2023
%Y Cf. A014021 (diagonal sums), A050935 (row sums), A124305 (inverse).
%Y Cf. A002054, A079977, A126869, A138364, A176971.
%K easy,sign,tabl
%O 0,13
%A _Paul Barry_, Oct 25 2006