login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124087
9th column of Catalan triangle A009766.
2
1430, 4862, 11934, 25194, 48450, 87210, 149226, 245157, 389367, 600875, 904475, 1332045, 1924065, 2731365, 3817125, 5259150, 7152444, 9612108, 12776588, 16811300, 21912660, 28312548, 36283236, 46142811, 58261125, 73066305, 91051857, 112784399, 138912059
OFFSET
15,1
FORMULA
a(n) = C(n,8)-C(n,6).
a(n) = A214292(n+15,7). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=15} 1/a(n) = 12515/11594583.
Sum_{n>=15} (-1)^(n+1)/a(n) = 1942528*log(2)/6435 - 60651032147/289864575. (End)
MAPLE
[seq(binomial(n, 8)-binomial(n, 6), n=15..45)];
MATHEMATICA
CoefficientList[Series[(429*z^7 - 3432*z^6 + 11880*z^5 - 23100*z^4 + 27300*z^3 - 19656*z^2 + 8008*z - 1430)/(z - 1)^9, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
Table[Binomial[n, 8]-Binomial[n, 6], {n, 15, 60}] (* or *) LinearRecurrence[ {9, -36, 84, -126, 126, -84, 36, -9, 1}, {1430, 4862, 11934, 25194, 48450, 87210, 149226, 245157, 389367}, 30] (* Harvey P. Dale, Apr 15 2017 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Nov 25 2006
STATUS
approved