login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123871
Expansion of g.f.: (1+x+x^2)/(1-4*x-4*x^2).
2
1, 5, 25, 120, 580, 2800, 13520, 65280, 315200, 1521920, 7348480, 35481600, 171320320, 827207680, 3994112000, 19285278720, 93117562880, 449611366400, 2170915717120, 10482108334080, 50612096204800, 244376818155520, 1179955657441280, 5697329902387200
OFFSET
0,2
LINKS
A. Burstein and T. Mansour, Words restricted by 3-letter ..., Annals of Combinatorics 7 (2003), 1-14. arXiv:math.CO/0112281
Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
FORMULA
a(n) = 4*a(n-1) + 4*a(n-2) for n>2. - Philippe Deléham, Sep 19 2009
MAPLE
seq(coeff(series((1+x+x^2)/(1-4*x-4*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Aug 08 2019
MATHEMATICA
CoefficientList[Series[(1+x+x^2)/(1-4*x-4*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 27 2012 *)
LinearRecurrence[{4, 4}, {1, 5, 25}, 30] (* Harvey P. Dale, Mar 25 2022 *)
PROG
(Magma) I:=[1, 5, 25]; [n le 3 select I[n] else 4*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 27 2012
(PARI) my(x='x+O('x^30)); Vec((1+x+x^2)/(1-4*x-4*x^2)) \\ G. C. Greubel, Aug 08 2019
(Sage)
def A123871_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x+x^2)/(1-4*x-4*x^2) ).list()
A123871_list(30) # G. C. Greubel, Aug 08 2019
(GAP) a:=[1, 5, 25];; for n in [4..30] do a[n]:=4*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Aug 08 2019
CROSSREFS
Column 5 in A265584.
Sequence in context: A089927 A269463 A068539 * A268453 A343801 A218989
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 20 2006
STATUS
approved