login
A123751
Primes in A007406.
2
5, 266681, 40799043101, 86364397717734821, 36190908596780862323291147613117849902036356128879432564211412588793094572280300268379995976006474252029, 334279880945246012373031736295774418479420559664800307123320901500922509788908032831003901108510816091067151027837158805812525361841612048446489305085140033
OFFSET
1,1
COMMENTS
A007406 lists the Wolstenholme numbers.
Numbers k such that A007406(k) is prime are listed in A111354.
LINKS
Carlos M. da Fonseca, M. Lawrence Glasser, Victor Kowalenko, Generalized cosecant numbers and trigonometric inverse power sums, Applicable Analysis and Discrete Mathematics, Vol. 12, No. 1 (2018), 70-109.
Eric Weisstein's World of Mathematics, Harmonic Number.
Eric Weisstein's World of Mathematics, Wolstenholme's Theorem.
Eric Weisstein's World of Mathematics, Wolstenholme Number
FORMULA
a(n) = A007406(A111354(n)).
EXAMPLE
A007406 begins {1, 5, 49, 205, 5269, 5369, 266681, 1077749, 9778141, ...}.
Thus a(1) = 5 because A007406(2) = 5 is prime but A007406(1) = 1 is not prime.
a(2) = 266681 because A007406(7) = 266681 is prime but all A007406(k) are composite for 2 < k < 7.
MATHEMATICA
Do[f=Numerator[Sum[1/i^2, {i, 1, n}]]; If[PrimeQ[f], Print[{n, f}]], {n, 1, 250}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Oct 11 2006
STATUS
approved