login
A123739
Partial sums of (-1)^floor(n*e).
4
1, 0, 1, 2, 1, 2, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1
OFFSET
1,4
LINKS
Kevin O'Bryant, Bruce Reznick, and Monika Serbinowska, Almost alternating sums, Amer. Math. Monthly, Vol. 113 (October 2006), 673-688.
MATHEMATICA
Rest[FoldList[Plus, 0, (-1)^Floor[E*Range[120]]]]
Accumulate[(-1)^Floor[E Range[200]]] (* Harvey P. Dale, May 06 2022 *)
PROG
(PARI) vector(50, n, sum(j=1, n, (-1)^(j\exp(-1))) ) \\ G. C. Greubel, Sep 05 2019
(Magma) [&+[(-1)^Floor(j*Exp(1)): j in [1..n]]: n in [1..130]]; // G. C. Greubel, Sep 05 2019
(Sage) [sum((-1)^floor(j*exp(1)) for j in (1..n)) for n in (1..130)] # G. C. Greubel, Sep 05 2019
CROSSREFS
Cf. A123724 (sum for 2^(1/3)), A123737 (sum for sqrt(2)), A123738 (sum for pi).
Sequence in context: A234694 A091704 A175799 * A165575 A165582 A165472
KEYWORD
easy,sign
AUTHOR
T. D. Noe, Oct 11 2006
STATUS
approved