login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123670
Triangle read by rows: T(n,k) is the coefficient of x^k of the polynomial n(n-x)(n-2x)(n-3x)...(n-(n-1)x) (n>=1, 0<=k<=n-1).
1
1, 4, -2, 27, -27, 6, 256, -384, 176, -24, 3125, -6250, 4375, -1250, 120, 46656, -116640, 110160, -48600, 9864, -720, 823543, -2470629, 2941225, -1764735, 557032, -86436, 5040, 16777216, -58720256, 84410368, -64225280, 27725824, -6723584, 836352, -40320, 387420489, -1549681956
OFFSET
1,2
COMMENTS
T(n,0) = n^n = A000312(n). Row sums yield the factorials (A000142).
EXAMPLE
Triangular sequence:
{1},
{4, -2},
{27, -27, 6},
{256, -384, 176, -24},
{3125, -6250, 4375, -1250, 120},
{46656, -116640, 110160, -48600,9864, -720},
{823543, -2470629, 2941225, -1764735, 557032, -86436, 5040},
{16777216, -58720256, 84410368, -64225280, 27725824, -6723584, 836352, -40320},
{387420489, -1549681956, 2611501074, -2410616376, 1325591001, -441450324, 86112396, -8876304, 362880},
{10000000000, -45000000000, 87000000000, -94500000000, 63273000000, -26932500000, 7236800000, -1172700000, 102657600, -3628800}
MAPLE
T:=(n, k)->coeff(product(n-j*x, j=0..n-1), x, k): for n from 1 to 10 do seq(T(n, k), k=0..n-1) od; # yields sequence in triangular form
a123670_row := proc(n) local k; seq(coeff(expand((-1)^n*n^(n-k)* pochhammer(-x, n)), x, n-k), k=0..n-1) end: # Peter Luschny, Nov 28 2010
MATHEMATICA
S3[n_, x_] = Product[(n - m*x), {m, 0, n - 1}] Table[ExpandAll[S3[n, x]], {n, 0, 10}] w2 = Table[CoefficientList[S3[n, x], x], {n, 1, 10}] Flatten[w2]
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Nov 29 2006
STATUS
approved