login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123647
Expansion of (eta(q^4) * eta(q^12) / (eta(q) * eta(q^3)))^2 in powers of q.
4
1, 2, 5, 12, 22, 42, 80, 136, 233, 396, 636, 1020, 1622, 2496, 3822, 5808, 8642, 12786, 18788, 27208, 39184, 56088, 79432, 111912, 156823, 217964, 301517, 415104, 567758, 773244, 1048616, 1414432, 1900524, 2543940, 3389792, 4501164, 5956430
OFFSET
1,2
LINKS
FORMULA
Euler transform of period 12 sequence [ 2, 2, 4, 0, 2, 4, 2, 0, 4, 2, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v * (1 + 4*u) * (1 + 4*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (1/16) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A187196. - Michael Somos, Sep 02 2015
Convolution inverse of A187196. - Michael Somos, Sep 02 2015
a(n) ~ exp(2*Pi*sqrt(n/3)) / (32 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 08 2015
EXAMPLE
G.f. = x + 2*x^2 + 5*x^3 + 12*x^4 + 22*x^5 + 42*x^6 + 80*x^7 + 136*x^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^4] QPochhammer[ q^12] / (QPochhammer[ q^] QPochhammer[ q^3]))^2, {q, 0, n}]; (* Michael Somos, Sep 02 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^4 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^3 + A)))^2, n))};
CROSSREFS
Cf. A187196.
Sequence in context: A026035 A215183 A086734 * A166249 A326762 A116711
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 04 2006
STATUS
approved