login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123527
Triangular array T(n,k) giving number of connected graphs with n labeled nodes and k edges (n >= 1, n-1 <= k <= n(n-1)/2).
6
1, 1, 3, 1, 16, 15, 6, 1, 125, 222, 205, 120, 45, 10, 1, 1296, 3660, 5700, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 16807, 68295, 156555, 258125, 331506, 343140, 290745, 202755, 116175, 54257, 20349, 5985, 1330, 210, 21, 1, 262144, 1436568
OFFSET
1,3
REFERENCES
Cowan, D. D.; Mullin, R. C.; Stanton, R. G. Counting algorithms for connected labelled graphs. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 225-236. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0414417 (54 #2519). - From N. J. A. Sloane, Apr 06 2012
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
LINKS
Seiichi Manyama, Rows n = 1..40, flattened (rows 1..14 from R. W. Robinson, rows 15..20 from Henrique G. G. Pereira)
T. Yanagita, T. Ichinomiya, Thermodynamic Characterization of Synchronization-Optimized Oscillator-Networks, arXiv preprint arXiv:1409.1979 [nlin.AO], 2014.
FORMULA
For k >= C(n-1, 2) + 1 (not smaller!), T(n,k) = C(C(n,2),k) where C(n,k) is the binomial coefficient. See A084546. - Geoffrey Critzer, Dec 08 2011
EXAMPLE
Triangle begins:
n = 1
k = 0: 1
****** total(1) = 1
n = 2
k = 1: 1
****** total(2) = 1
n = 3
k = 2: 3
k = 3: 1
****** total(3) = 4
n = 4
k = 3: 16
k = 4: 15
k = 5: 6
k = 6: 1
****** total(4) = 38
n = 5
k = 4: 125
k = 5: 222
k = 6: 205
k = 7: 120
k = 8: 45
k = 9: 10
k = 10: 1
****** total(5) = 728
MATHEMATICA
nn = 8; a = Sum[(1 + y)^Binomial[n, 2] x^n/n!, {n, 0, nn}]; f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Drop[Range[0, nn]! CoefficientList[Series[Log[a], {x, 0, nn}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 08 2011 *)
T[ n_, k_] := If[ n < 1, 0, Coefficient[ n! SeriesCoefficient[ Log[ Sum[ (1 + y)^Binomial[m, 2] x^m/m!, {m, 0, n}]], {x, 0, n}], y, n - 1 + k]]; (* Michael Somos, Aug 12 2017 *)
CROSSREFS
See A062734 for another version with more information. Row sums give A001187.
Sequence in context: A156653 A048159 A276640 * A288265 A096611 A176666
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Nov 13 2006
STATUS
approved