OFFSET
1,2
COMMENTS
Given a prime p == 1 (mod 6), the sum x is the unique solution to 4*p = x^2 + 27*y^2 where x == 1 (mod 3) and y is a positive integer.
Given a prime p == 1 (mod 6), the number of solutions to u^3 + v^3 == 1 (mod p) is p - 2 + x. - Michael Somos, Jul 11 2022
REFERENCES
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 55.
EXAMPLE
If p = 37, then 4*37 = (-11)^2 + 27*(1)^2 where -11 = Sum_{k=0..36} Kronecker(4k^3+1, 37) and 37 is the 5th prime of the form 6k+1 so a(5) = -11.
If p = 13, then 4*p = x^2 + 26*y^2 where x = -5, y = 1. The solutions to u^3 + v^3 == 1 (mod p) is {(0,1), (1,0), (0,3), (3,0), (0,9), (9,0)} with cardinality = 6 = 13 - 2 + (-5). - Michael Somos, Jul 11 2022
PROG
(PARI) {a(n) = my(p, c); if(n<1, 0, c=0; p=0; while(c<n, p++; if(isprime(p)& p%6==1, c++)); sum(x=0, p-1, kronecker(4*x^3+1, p)) )};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Sep 30 2006
STATUS
approved