login
A123377
Values X satisfying the equation 5(X-Y)^4 - XY = 0, where X >= Y.
2
0, 10, 2916, 933470, 300476232, 96750651250, 31153377608748, 10031290272012230, 3230044304029586064, 1040064234424568675290, 334897453437128916148980, 107835939942462262098571310
OFFSET
0,2
COMMENTS
To find Y values: b(n) = c(n)*(-1 + d(n)) which gives: 0, 8, 2880, 932824, 300464640, 96750443240, ...
LINKS
FORMULA
a(n) = c(n)*(1+d(n)) with c(0) = 0, c(1) = 1 and c(n) = 18*c(n-1) - c(n-2) d(0) = 1, d(1) = 9 and d(n) = 18*d(n-1) - d(n-2).
From Max Alekseyev, Nov 13 2009: (Start)
For n >= 4, a(n) = 340*a(n-1) - 5798*a(n-2) + 340*a(n-3) - a(n-4).
O.g.f.: 2*x*(5*x^2 - 242*x + 5)/( (x^2 -18*x +1)*(x^2 -322*x +1)) (End)
MATHEMATICA
CoefficientList[Series[2*x*(5*x^2 - 242*x + 5)/(x^2 - 18*x + 1)/(x^2 - 322*x + 1), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(2*x*(5*x^2 - 242*x + 5)/( (x^2 -18*x +1)*(x^2 -322*x +1)))) \\ G. C. Greubel, Oct 13 2017
CROSSREFS
Cf. A123381.
Sequence in context: A132675 A227223 A208185 * A061543 A305666 A320307
KEYWORD
nonn
AUTHOR
Mohamed Bouhamida, Oct 13 2006
EXTENSIONS
More terms from Max Alekseyev, Nov 13 2009
STATUS
approved