OFFSET
0,2
COMMENTS
To find Y values: b(n) = c(n)*(-1 + d(n)) which gives: 0, 8, 2880, 932824, 300464640, 96750443240, ...
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..395
FORMULA
a(n) = c(n)*(1+d(n)) with c(0) = 0, c(1) = 1 and c(n) = 18*c(n-1) - c(n-2) d(0) = 1, d(1) = 9 and d(n) = 18*d(n-1) - d(n-2).
From Max Alekseyev, Nov 13 2009: (Start)
For n >= 4, a(n) = 340*a(n-1) - 5798*a(n-2) + 340*a(n-3) - a(n-4).
O.g.f.: 2*x*(5*x^2 - 242*x + 5)/( (x^2 -18*x +1)*(x^2 -322*x +1)) (End)
MATHEMATICA
CoefficientList[Series[2*x*(5*x^2 - 242*x + 5)/(x^2 - 18*x + 1)/(x^2 - 322*x + 1), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(2*x*(5*x^2 - 242*x + 5)/( (x^2 -18*x +1)*(x^2 -322*x +1)))) \\ G. C. Greubel, Oct 13 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Mohamed Bouhamida, Oct 13 2006
EXTENSIONS
More terms from Max Alekseyev, Nov 13 2009
STATUS
approved