OFFSET
0,4
FORMULA
G.f.: A(x) = Product_{n>=0} (1 + F_n(x) )^(1/2^(n+1)) where F_0(x)=x, F_{n+1}(x)=F_n(x+x^2); a product that involves the n-th self-compositions of x+x^2.
EXAMPLE
G.f.: A(x) = (1 + x)^(1/2) * (1 + x+x^2)^(1/4) * (1 + x+2x^2+2x^3+x^4)^(1/8) * (1 + x+3x^2+6x^3+9x^4+10x^5+8x^6+4x^7+x^8)^(1/16) *...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=-A+2*sqrt((1+x)*subst(A, x, x+x^2+x*O(x^n)))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 21 2006
STATUS
approved