login
A122851
Number triangle T(n,k) = C(k,n-k)*(n-k)!.
2
1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 0, 6, 4, 1, 0, 0, 0, 6, 12, 5, 1, 0, 0, 0, 0, 24, 20, 6, 1, 0, 0, 0, 0, 24, 60, 30, 7, 1, 0, 0, 0, 0, 0, 120, 120, 42, 8, 1, 0, 0, 0, 0, 0, 120, 360, 210, 56, 9, 1
OFFSET
0,9
COMMENTS
Row sums are A122852.
Triangle T(n,k), read by rows, given by (0,1,-1,0,0,1,-1,0,0,1,-1,0,0,1,...) DELTA (1,0,0,-1,2,0,0,-2,3,0,0,-3,4,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
FORMULA
Number triangle T(n,k)=[k<=n]*k!/(2k-n)!.
T(n,k) = A008279(k,n-k). - Danny Rorabaugh, Apr 23 2015
EXAMPLE
Triangle begins
1,
0, 1,
0, 1, 1,
0, 0, 2, 1,
0, 0, 2, 3, 1,
0, 0, 0, 6, 4, 1,
0, 0, 0, 6, 12, 5, 1,
0, 0, 0, 0, 24, 20, 6, 1
MATHEMATICA
Flatten[Table[Binomial[k, n-k](n-k)!, {n, 0, 10}, {k, 0, n}]] Harvey P. Dale, May 16 2012
PROG
(Magma) /* As triangle: */ [[Binomial(k, n-k)*Factorial(n-k): k in [0..n]]: n in [0.. 7]]; // Vincenzo Librandi, Apr 24 2015
CROSSREFS
Cf. A094587.
Sequence in context: A191400 A168315 A120730 * A064301 A199881 A060701
KEYWORD
nonn,tabl,easy
AUTHOR
Paul Barry, Sep 14 2006
STATUS
approved