login
A122502
Expansion of x/(1 - 22 x^2 - 54 x^3 - 38 x^4).
0
0, 1, 0, 22, 54, 522, 2376, 15236, 82512, 483332, 2728296, 15667920, 89257896, 510388840, 2913416640, 16643861824, 95047963488, 542884234608, 3100533567552, 17708509939040, 101139309767520, 577645632221792
OFFSET
1,4
REFERENCES
R. G. Newton, Scattering Theory of Waves and Particles, McGraw Hill, New York, 1966, pp. 557ff.
FORMULA
a(0)=0, a(1)=1, a(2)=0, a(3)=22, a(n)=22*a(n-2)+54*a(n-3)+38*a(n-4) [From Harvey P. Dale, Aug 12 2011]
MATHEMATICA
f[x_] = -38 - 54 x - 22 x^2 + x^4 ExpandAll[x^4*f[1/x]] a=Table[ SeriesCoefficient[ Series[x/(1-22 x^2-54 x^3-38 x^4), {x, 0, 50}], n], {n, 0, 50}]
CoefficientList[Series[x/(1-22 x^2-54 x^3-38 x^4), {x, 0, 30}], x] (* or *) LinearRecurrence[{0, 22, 54, 38}, {0, 1, 0, 22}, 31] (* Harvey P. Dale, Aug 12 2011 *)
CROSSREFS
Sequence in context: A290381 A324486 A351170 * A244212 A303582 A289015
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 15 2006
EXTENSIONS
Edited by N. J. A. Sloane, Serp 17 2006
STATUS
approved