login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122184
Numerator of Sum_{k=0..2n} (-1)^k/C(2n,k)^3.
0
1, 15, 1705, 47789, 1369377, 213162301, 43005554527, 14505995375, 23869750002797, 2384790127843063, 624724994927411, 24386251366041479501, 2042595777439018142725, 11191251831905709132993
OFFSET
0,2
COMMENTS
p^k divides a((p^k+1)/2) for prime p>2 and integer k>0.
LINKS
Eric Weisstein's World of Mathematics, Binomial Sums.
FORMULA
a(n) = Numerator[ Sum[ (-1)^k / Binomial[2n,k]^3, {k,0,2n} ] ].
MATHEMATICA
Table[ Numerator[ Sum[ (-1)^k / Binomial[2n, k]^3, {k, 0, 2n} ] ], {n, 0, 25} ]
CROSSREFS
Cf. A046825 = Numerator of Sum_{k=0..n} 1/C(n, k). Cf. A100516 = Numerator of Sum_{k=0..n} 1/C(n, k)^2. Cf. A100518 = Numerator of Sum_{k=0..n} 1/C(n, k)^3. Cf. A100520 = Numerator of Sum_{k=0..2n} (-1)^k/C(2n, k)^2.
Sequence in context: A208860 A195891 A195521 * A069450 A205346 A208868
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, May 10 2007
STATUS
approved