login
A122132
Squarefree numbers multiplied by binary powers.
33
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85
OFFSET
1,2
COMMENTS
These numbers are called "oddly squarefree" in Banks and Luca. - Michel Marcus, Mar 14 2016
The asymptotic density of this sequence is 8/Pi^2 (A217739). - Amiram Eldar, Sep 21 2020
LINKS
William D. Banks and Florian Luca, Roughly squarefree values of the Euler and Carmichael functions, Acta Arithmetica, Vol. 120, No. 3 (2005), pp. 211-230.
FORMULA
a(n) = A007947(a(n)) * A006519(a(n)) / (2 - a(n) mod 2);
A007947(a(n)) = A000265(a(n)) * (2 - a(n) mod 2).
A008966(A000265(a(n))) = 1. - Reinhard Zumkeller, Jan 24 2012
A010052(A008477(a(n))) = 1. - Reinhard Zumkeller, Feb 17 2012
MATHEMATICA
Select[Range@ 85, SquareFreeQ[#/2^IntegerExponent[#, 2]] &] (* Michael De Vlieger, Mar 15 2020 *)
PROG
(Haskell)
a122132 n = a122132_list !! (n-1)
a122132_list = filter ((== 1) . a008966 . a000265) [1..]
-- Reinhard Zumkeller, Jan 24 2012
(PARI) is(n)=issquarefree(n>>valuation(n, 2)); \\ Charles R Greathouse IV, Sep 02 2015
CROSSREFS
Complement: A038838.
Cf. A217739.
Sequence in context: A043094 A023803 A353511 * A347248 A347243 A325389
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 21 2006
STATUS
approved