OFFSET
0,2
COMMENTS
Convolved with [1, 2, 2, 2, ...] = powers of 4: [1, 4, 16, 64, ...]. - Gary W. Adamson, Jun 02 2009
a(n) is the number of compositions of n when there are 2 types of 1 and 6 types of other natural numbers. - Milan Janjic, Aug 13 2010
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,4).
FORMULA
a(n) = 2*A108981(n-1) for n > 0, with a(0) = 1.
a(2*n) = 4*a(2*n-1) + 2, a(2*n+1) = 4*a(2*n) - 2.
a(n) = Sum_{k=0..n} 2^(n-k)*A055380(n,k).
G.f.: (1-x)/(1-3*x-4*x^2).
Lim_{n->infinity} a(n+1)/a(n) = 4.
a(n) = Sum_{k=0..n} A122016(n,k)*2^k. - Philippe Deléham, Nov 05 2008
MATHEMATICA
CoefficientList[Series[(1-x)/(1-3*x-4*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 06 2012 *)
PROG
(Sage) from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1, 2, 3, 4, lambda n: 0); [next(it) for i in range(24)] # Zerinvary Lajos, Jul 03 2008
(Sage) ((1-x)/(1-3*x-4*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 18 2019
(PARI) Vec((1-x)/(1-3*x-4*x^2)+O(x^30)) \\ Charles R Greathouse IV, Jan 11 2012
(Magma) I:=[1, 2]; [n le 2 select I[n] else 3*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 06 2012
(GAP) a:=[1, 2];; for n in [3..30] do a[n]:=3*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, May 18 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Oct 19 2006
EXTENSIONS
Corrected by T. D. Noe, Nov 07 2006
STATUS
approved