login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122050
a(n) = (n-1)*a(n-1) - a(n-4) with a(0)=0, a(1)=1, a(2)=2, a(3)=1.
3
0, 1, 2, 1, 3, 11, 53, 317, 2216, 17717, 159400, 1593683, 17528297, 210321847, 2734024611, 38274750871, 574103734768, 9185449434441, 156149906360886, 2810660039745077, 53401966651421695, 1068030147578999459, 22428476949252627753, 493423682223518065489
OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..449 [Offset adapted by Georg Fischer, Jun 06 2021]
FORMULA
a(n) ~ c * (n-1)!, where c = 0.438972920465828798175530475000702431170711231072281289641... - Vaclav Kotesovec, Jun 06 2021
MAPLE
a := proc (n) option remember;
if n < 3 then n elif n = 3 then 1 else (n-1)*a(n-1)-a(n-4) end if
end proc:
seq(a(n), n = 0..30); # G. C. Greubel, Oct 04 2019
MATHEMATICA
a[0]=0; a[1]=1; a[2]=2; a[3]=1; a[n_]:= a[n]= (n-1)*a[n-1] - a[n-4]; Table[a[n], {n, 0, 30}]
RecurrenceTable[{a[0]==0, a[1]==1, a[2]==2, a[3]==1, a[n]==(n-1)a[n-1]- a[n-4]}, a, {n, 0, 30}] (* Harvey P. Dale, Jul 16 2016 *)
CoefficientList[AsymptoticDSolveValue[{(x^4 + 1)*f[x] - x^2*f'[x] + 3*x^3 - x^2 - x == 0, f[1] == 1}, f[x], {x, 0, 20}], x] (* version >=12, Vaclav Kotesovec, Jun 06 2021 *)
PROG
(PARI) my(m=30, v=concat([0, 1, 2, 1], vector(m-4))); for(n=5, m, v[n] = (n-2)*v[n-1] - v[n-4] ); v \\ G. C. Greubel, Oct 04 2019
(Magma) I:=[0, 1, 2, 1]; [n le 4 select I[n] else (n-2)*Self(n-1) - Self(n-4): n in [1..30]]; // G. C. Greubel, Oct 04 2019
(Sage)
def a(n):
if n<4: return n-1
elif n==4: return 1
else: return (n-2)*a(n-1) - a(n-4)
[a(n) for n in (1..30)] # G. C. Greubel, Oct 04 2019
(GAP) a:=[0, 1, 2, 1];; for n in [5..30] do a[n]:=(n-2)*a[n-1]-a[n-4]; od; a; # G. C. Greubel, Oct 04 2019
CROSSREFS
Cf. A122022.
Sequence in context: A036448 A369242 A187111 * A081323 A173958 A372563
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 13 2006
EXTENSIONS
Offset changed to 0 by Georg Fischer, Jun 06 2021
STATUS
approved