Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:45:27
%S 0,1,2,1,1,-3,-2,-7,13,5,62,-99,17,-719,1106,-923,10453,-16407,24298,
%T -183655,303217,-621019,3792662,-6685359,16834061,-90123923,170597318,
%U -494141387,2423695393,-4929671655,15765512842,-72793142659,158725990837,-545758527919,2415313413266
%N a(n) = a(n-2) - (n-3)*a(n-3), with a(0)=0, a(1)=1, a(2)=2.
%H G. C. Greubel, <a href="/A122044/b122044.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = a(n-2) - (n-3)*a(n-3), with a(0)=0, a(1)=1, a(2)=2. - _G. C. Greubel_, Oct 04 2019
%p a:= proc(n) option remember;
%p if n < 3 then n
%p else a(n-2)-(n-3)*a(n-3)
%p fi;
%p end proc:
%p seq(a(n), n = 0..35); # _G. C. Greubel_, Oct 04 2019
%t a[0]=0; a[1]=1; a[2]=2; a[n_]:= a[n]= a[n-2] - (n-3)*a[n-3]; Table[a[n], {n, 0, 35}]
%o (PARI) my(m=35, v=concat([0,1,2], vector(m-3))); for(n=4, m, v[n] = v[n-2] - (n-4)*v[n-3] ); v \\ _G. C. Greubel_, Oct 04 2019
%o (Magma) I:=[0,1,2]; [n le 3 select I[n] else Self(n-2) - (n-4)*Self(n-3): n in [1..35]]; // _G. C. Greubel_, Oct 04 2019
%o (Sage)
%o def a(n):
%o if n<3: return n
%o else: return a(n-2) - (n-3)*a(n-3)
%o [a(n) for n in (0..35)] # _G. C. Greubel_, Oct 04 2019
%o (GAP) a:=[0,1,2];; for n in [4..35] do a[n]:=a[n-2]-(n-4)*a[n-3]; od; a; # _G. C. Greubel_, Oct 04 2019
%Y Cf. A122021, A122048, A122050.
%K sign,easy
%O 0,3
%A _Roger L. Bagula_, Sep 13 2006
%E Edited by _N. J. A. Sloane_, Sep 17 2006
%E More terms from _Max Alekseyev_, Sep 13 2009