OFFSET
0,1
COMMENTS
a(n) in {1,3,5,7} for all n. a(4k+i) = i if i is odd.
There is a typo in Grytczuk's definition: he has "+ 5" instead of "+ 4".
LINKS
A. Carpi, Multidimensional unrepetitive configurations, Theoret. Comput. Sci., 56 (1988), 233-241. a(n) = a_n of lemma 3.2 for the case p=2 and m=0 (which is corollary 3.3).
Jaroslaw Grytczuk, Thue type problems for graphs, points and numbers, Discrete Math., 308 (2008), 4419-4429. [See Problem 15.]
Jui-Yi Kao, Narad Rampersad, Jeffrey Shallit, Manuel Silva, Words Avoiding Repetitions in Arithmetic Progressions, Theoretical Computer Science, volume 391, issues 1-2, February 2008, pages 126-137. And arXiv:math/0608607 [math.CO], 2006. (Extending to generalized paperfolding sequences.)
FORMULA
Morphism 1 -> 5,3; 3 -> 7,3; 5 -> 5,1; 7 -> 7,1 starting from 5 [Carpi, h in remark after lemma 3.2]. - Kevin Ryde, Sep 09 2020
MATHEMATICA
a[0]=5; a[n_]:=If[OddQ[n], Mod[n, 4], 4+Mod[Select[Divisors[n], OddQ][[-1]], 4]]; Table[a[n], {n, 0, 100}] (* James C. McMahon, Oct 25 2024 *)
PROG
(PARI) a(n) = 2*if(n, bittest(n, valuation(n, 2)+1)) + if(n%2, 1, 5); \\ Kevin Ryde, Sep 09 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 05 2008
EXTENSIONS
Terms from a(26) on from John W. Layman, Aug 27 2008
STATUS
approved