login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121907
Expansion of g.f.: (1 + x + x^2)/(1 - 2*x - 2*x^2).
8
1, 3, 9, 24, 66, 180, 492, 1344, 3672, 10032, 27408, 74880, 204576, 558912, 1526976, 4171776, 11397504, 31138560, 85072128, 232421376, 634987008, 1734816768, 4739607552, 12948848640, 35376912384, 96651522048, 264056868864, 721416781824, 1970947301376
OFFSET
0,2
COMMENTS
a(n-1) is the number of compositions of n into floor((3*j-1)/2) kinds of j's for all j >= 1. The sequence of such compositions is 1,1,3,9,24,... (i.e., this sequence prepended by 1) and has g.f. 1/(1-Sum_{j>=1} floor((3*j-1)/2)*x^j). - Joerg Arndt, Jul 06 2011
a(n) is the number of length n words on 3 letters (ternary words) such that the length of any run of identical letters is <= 2. Cf. A181137 for a generalization. - Geoffrey Critzer, Sep 16 2013
REFERENCES
A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14.
LINKS
A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, arXiv:math/0112281 [math.CO], 2001.
Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
FORMULA
a(0)=1, a(1)=3, a(2)=9; a(n) = 2*a(n-1) + 2*a(n-2) for n>=3. - Philippe Deléham, Sep 19 2009
G.f.: (1/x)*(-1 + 1/(1-Sum_{j>=1} floor((3*j-1)/2)*x^j)). - Joerg Arndt, Jul 06 2011
E.g.f.: (1/2)*exp(x)*(3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - 1/2. - Stefano Spezia, Oct 08 2019
MAPLE
seq(coeff(series((1+x+x^2)/(1-2*x-2*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 07 2019
MATHEMATICA
CoefficientList[Series[(1+x+x^2)/(1-2x-2x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 2}, {1, 3, 9}, 30] (* Harvey P. Dale, Dec 03 2011 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1+x+x^2)/(1-2*x-2*x^2)) \\ G. C. Greubel, Oct 07 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x+x^2)/(1-2*x-2*x^2) )); // G. C. Greubel, Oct 07 2019
(Sage)
def A121907_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x+x^2)/(1-2*x-2*x^2)).list()
A121907_list(30) # G. C. Greubel, Oct 07 2019
(GAP) a:=[3, 9];; for n in [3..30] do a[n]:=2*(a[n-1]+a[n-2]); od; Concatenation([1], a); # G. C. Greubel, Oct 07 2019
CROSSREFS
Column 3 in A265584.
Sequence in context: A269461 A096168 A051042 * A179176 A118771 A091587
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 20 2006
STATUS
approved