login
Expansion of -x*(x+1)^2*(x^8-2*x^7+2*x^6-3*x^5+3*x^4+2*x^2-x+1) / (x^12+6*x^6-1).
0

%I #17 Jan 08 2018 01:50:06

%S 1,1,1,3,5,3,5,5,5,18,31,18,31,31,31,111,191,111,191,191,191,684,1177,

%T 684,1177,1177,1177,4215,7253,4215,7253,7253,7253,25974,44695,25974,

%U 44695,44695,44695,160059,275423,160059,275423,275423,275423,986328

%N Expansion of -x*(x+1)^2*(x^8-2*x^7+2*x^6-3*x^5+3*x^4+2*x^2-x+1) / (x^12+6*x^6-1).

%F G.f.: -x*(x+1)^2*(x^8-2*x^7+2*x^6-3*x^5+3*x^4+2*x^2-x+1) / (x^12+6*x^6-1). - _Colin Barker_, Mar 15 2013

%F a(n) = +6*a(n-6) +1*a(n-12). - _Colin Barker_, Mar 15 2013

%t SL[n_, p_] := Module[{vars = Table[Unique[ a], {n^2}], iters, mat}, iters = Map[{#, 0, p - 1} &, vars]; mat = Partition[vars, n]; Reap[ Do[If[Det[mat, Modulus -> p] == 1, Sow[mat], Continue[]], Evaluate[Sequence @@ iters]]][[2, 1]]] a0 = SL[2, 2]; M[n_] := a0[[1 + Mod[n, Length[a0]]]] v[1] = {1, 1} v[n_] := v[n] = M[n].v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]

%K nonn,easy

%O 1,4

%A _Roger L. Bagula_, Aug 24 2006

%E New name from _Colin Barker_, Mar 17 2013