OFFSET
0,4
FORMULA
a(n) = A121648(n)^(1/2).
G.f. satisfies: A(x)*A(-x) = ( A(x) + A(-x) )/2. - Paul D. Hanna, Aug 14 2006
EXAMPLE
A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 16*x^7 + 27*x^8 +...
The coefficients of 1 - 1/A(x) equal the square of each term:
1/A(x) = 1 - x - x^3 - x^5 - 4*x^7 - 9*x^9 - 25*x^11 - 64*x^13 - 256*x^15 -... - a(n)^2*x^(2*n+1) -...
PROG
(PARI) {a(n)=local(B); if(n==0, 1, B=sum(k=0, n\2, a(k)^2*x^(2*k)); polcoeff(1/(1-x*B+x*O(x^n)), n))}
(PARI) {a(n)=local(A, m); if(n<0, 0, m=1; A=1+x+O(x^2); while(m<=n, m*=2; A=1/(1-x*sum(k=0, m-1, polcoeff(A, k)^2*x^(2*k), O(x^(2*m))))); polcoeff(A, n))} /* Michael Somos, Aug 18 2006 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 14 2006
STATUS
approved