login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121149
Minimal number of vertices in a planar connected n-polyhex.
5
1, 6, 10, 13, 16, 19, 22, 24, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 54, 57, 59, 62, 64, 66, 69, 71, 73, 76, 78, 80, 83, 85, 87, 90, 92, 94, 96, 99, 101, 103, 106, 108, 110, 112, 115, 117, 119, 121, 124, 126, 128, 130, 133, 135, 137, 139, 142, 144, 146, 148, 150, 153, 155, 157, 159, 162, 164, 166, 168, 170, 173, 175, 177, 179, 181, 184, 186, 188, 190, 192, 195, 197, 199, 201, 203, 206, 208, 210, 212, 214, 216, 219, 221, 223, 225, 227, 230, 232, 234, 236
OFFSET
0,2
COMMENTS
a(4) appears to be wrong: the polyhex labeled "bee" on Weisstein's article has 14 vertices. - Joerg Arndt, Oct 05 2016. However, "bee" has 16 vertices when the two "interior" vertices are counted, i.e., those where three hexagons meet. - Felix Fröhlich, Oct 05 2016
a(n) is also the size of the smallest polyhex with n disjoint holes. - Luca Petrone, Feb 28 2017
Also numbers found at the end of n-th hexagonal arc of 'graphene' number spiral (numbers in the nodes of planar net 6^3, starting with 1). See the "Illustration for the first 76 terms" link. - Yuriy Sibirmovsky, Oct 04 2016
From Ya-Ping Lu, Feb 19 2022: (Start)
For each n-polyhex (n>=3), an n-gon can be constructed by connecting the centers of external neighboring hexagons in the n-polyhex. If the n-gon is convex (n is indicated by * in the figure below), a(n+1) = a(n) + 3; otherwise, a(n+1) = a(n) + 2. For example, for n=3, triangle 1-2-3-1 is convex and a(4) = a(3) + 3 = 16. For n=17, heptagon 6-8-9-11-13-15-17-6 is nonconvex and a(18) = a(17) + 2 = 52.
.
49--50--51--52*-53
/ \ / \ / \ / \ / \
48*-28--29--30*-31--54
/ \ / \ / \ / \ / \ / \
47--27*-13--14*-15--32--55
/ \ / \ / \ / \ / \ / \ / \
46--26--12*--4*--5*-16*-33*-56*
/ \ / \ / \ / \ / \ / \ / \ / \
45--25--11---3*--1---6--17--34--57
\ / \ / \ / \ / \ / \ / \ / \ /
44*-24*-10*--2---7*-18--35--58
\ / \ / \ / \ / \ / \ / \ /
43--23---9---8*-19*-36--59
\ / \ / \ / \ / \ / \ /
42--22--21*-20--37*-60
\ / \ / \ / \ / \ /
41--40*-39--38--61*
(End)
LINKS
Moriah Elkin, Gregg Musiker, and Kayla Wright, Twists of Gr(3,n) Cluster Variables as Double and Triple Dimer Partition Functions, arXiv:2305.15531 [math.CO], 2023. See p. 18.
Eric Weisstein's World of Mathematics, Polyhex.
CROSSREFS
Essentially the same as A182617: a(n) = A182617(n) + 1.
Sequence in context: A346958 A288222 A004234 * A315140 A315141 A088770
KEYWORD
nonn,more
AUTHOR
Alexander Adamchuk, Aug 12 2006
EXTENSIONS
More terms from Luca Petrone, Mar 19 2017
a(0)=1 added by N. J. A. Sloane, Mar 23 2017
STATUS
approved