login
A121079
a(n) = Sum_{i=0..n} C(n,i)^2*i!*4^i + 2^n*n!.
2
2, 7, 57, 757, 13889, 322021, 8962225, 289928549, 10666353409, 439225736005, 19999574572721, 997265831223685, 54028099173536449, 3159178743189436709, 198259676112757095985, 13289233274778582230821, 947420482287986880154625, 71574264415491967142194309
OFFSET
0,1
LINKS
Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
Z. Li, Z. Li and Y. Cao, Enumeration of symplectic and orthogonal injective partial transformations, Discrete Math., 306 (2006), 1781-1787.
MATHEMATICA
Array[Sum[Binomial[#, i]^2*i!*4^i, {i, 0, #}] + 2^#*#! &, 18, 0] (* Michael De Vlieger, Nov 28 2018 *)
PROG
(PARI) a(n) = 2^n*n! + sum(i=0, n, binomial(n, i)^2*i!*4^i); \\ Michel Marcus, May 31 2018
CROSSREFS
Sequence in context: A337833 A294948 A178769 * A270395 A105183 A269994
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 11 2006
STATUS
approved