Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #3 Mar 30 2012 18:36:57
%S 0,1,6,109,112494,1887350536045,543991754934632523092182415214,
%T 758213844806172103575972149363453352380811718063209070444420739586832237
%N Numerators of the convergents to the continued fraction for the constant A119812 defined by binary sums involving Beatty sequences: c = Sum_{n>=1} A049472(n)/2^n = Sum_{n>=1} 1/2^A001951(n).
%C The number of digits in these numerators are (beginning at n=2): [1,1,3,6,13,30,72,174,420,1013,2444,5901,14245,34391,83027,...].
%e c = 0.858267656461002055792260308433375148664905190083506778667684867..
%e Convergents begin:
%e [0/1, 1/1, 6/7, 109/127, 112494/131071, 1887350536045/2199023255551,..]
%e where the denominators of the convergents equal [2^A001333(n-1)-1]:
%e [1,1,7,127,131071,2199023255551,633825300114114700748351602687,...]
%e and A001333 is numerators of continued fraction convergents to sqrt(2).
%o (PARI) {a(n)=local(M=contfracpnqn(vector(n,k,if(k==1,0,if(k==2,1, 4^round(((1+sqrt(2))^(k-2)+(1-sqrt(2))^(k-2))/(2*sqrt(2))) +if(k==3,2,2^round(((1+sqrt(2))^(k-3)-(1-sqrt(2))^(k-3))/2))))))); return(M[1,1])}
%Y Cf. A119812 (constant), A119813 (continued fraction), A001333; A119809 (dual constant).
%K frac,nonn
%O 1,3
%A _Paul D. Hanna_, May 26 2006