login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119811
Numerators of the convergents to the continued fraction for the constant A119809 defined by binary sums involving Beatty sequences: c = Sum_{n>=1} 1/2^A049472(n) = Sum_{n>=1} A001951(n)/2^n.
3
2, 7, 72, 9511, 1246930216, 2742028548141904733479, 1737967067447512977484869808775151193351704374584616
OFFSET
1,1
COMMENTS
The number of digits in these numerators are (beginning at n=1): [1,1,2,4,10,22,52,124,297,717,1729,4173,10074,24319,58709,141735,..].
EXAMPLE
c = 2.32258852258806773012144068278798408011950250800432925665718...
Convergents begin:
[2/1, 7/3, 72/31, 9511/4095, 1246930216/536870911,...]
where the denominators of the convergents equal [2^A000129(n-1)-1]:
[1,3,31,4095,536870911,1180591620717411303423,...],
and A000129 is the Pell numbers.
PROG
(PARI) {a(n)=local(M=contfracpnqn(vector(n, k, if(k==1, 2, 2^round(((1+sqrt(2))^(k-1)+(1-sqrt(2))^(k-1))/2) +2^round(((1+sqrt(2))^(k-2)-(1-sqrt(2))^(k-2))/(2*sqrt(2))))))); return(M[1, 1])}
CROSSREFS
Cf. A119809 (constant), A119811 (continued fraction), A000129; A119812 (dual constant).
Sequence in context: A304192 A141315 A215637 * A319621 A167526 A064646
KEYWORD
frac,nonn
AUTHOR
Paul D. Hanna, May 26 2006
STATUS
approved