login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119287
Alternating sum of the sixth powers of the first n Fibonacci numbers.
9
0, -1, 0, -64, 665, -14960, 247184, -4579625, 81186496, -1463617920, 26217022705, -470764268256, 8445336180000, -151560390359569, 2719538168853120, -48800836192146880, 875690649999921929, -15713664197268146000, 281970036429821245616, -5059748557502924705465, 90793493265349521060160, -1629223203785737022267136, 29235223670642547226470625
OFFSET
0,4
COMMENTS
Natural bilateral extension (brackets mark index 0): ..., 14960, -665, 64, 0, 1, 0, [0], -1, 0, -64, 665, -14960, 247184, ... This is (-A119287)-reversed followed by A119287.
FORMULA
Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k=1..n} (-1)^k F(k)^6.
a(n) = (-1)^n (1/250) F(6n+3) - (6/125) F(4n+2) + (-1)^n (3/25) F(2n+1) - (2/25)(2 n + 1).
Recurrence: a(n) + 12 a(n-1) - 117 a(n-2) - 156 a(n-3) + 520 a(n-4) - 156 a(n-5) - 117 a(n-6) + 12 a(n-7) + a(n-8) = 0.
G.f.: A(x) = (-x - 12 x^2 + 53 x^3 + 53 x^4 - 12 x^5 - x^6)/(1 + 12 x - 117 x^2 - 156 x^3 + 520 x^4 - 156 x^5 - 117 x^6 + 12 x^7 + x^8) = -x(1 + x)(1 + 11 x - 64 x^2 + 11 x^3 + x^4)/((1 - x)^2 (1 + 3 x + x^2)(1 - 7 x + x^2)(1 + 18 x + x^2)).
MATHEMATICA
a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[k]^6, {k, 1, n} ], Sum[ -(-1)^k Fibonacci[ -k]^6, {k, 1, -n - 1} ] ]
Accumulate[Times@@@Partition[Riffle[Fibonacci[Range[0, 30]]^6, {1, -1}, {2, -1, 2}], 2]] (* Harvey P. Dale, Jul 23 2013 *)
KEYWORD
sign,easy
AUTHOR
Stuart Clary, May 13 2006
STATUS
approved