login
A118980
Triangle read by rows: rows = inverse binomial transforms of columns of A309220.
3
1, 2, 1, 6, 5, 2, 14, 22, 18, 6, 34, 85, 118, 84, 24, 82, 311, 660, 780, 480, 120, 198, 1100, 3380, 5964, 6024, 3240, 720, 478, 3809, 16380, 40740, 60480, 52920, 25200, 5040, 1154, 13005, 76518, 258804, 531864, 676080, 519840, 221760, 40320, 2786, 43978, 348462, 1564314, 4286880, 7444800, 8240400
OFFSET
1,2
COMMENTS
First few columns of A309220:
1, 2, 6, 14, 34, ...
1, 3, 11, 36, 119, ...
1, 4, 18, 76, 322, ...
1, 5, 27, 140, 727, ...
1, 6, 38, 234, 1442, ...
1, 7, 51, 364, 2599, ...
1, 8, 66, 536, 4354, ...
...
EXAMPLE
First few rows of the triangle:
1;
2, 1;
6, 5, 2;
14, 22, 18, 6;
34, 85, 118, 84, 24;
82, 311, 660, 780, 480, 120;
...
Column 3 of A309220 = (6, 11, 18, 27, 38, 51, ...), whose inverse binomial transform is (6, 5, 2).
MAPLE
with(transforms);
M := 12;
T := [1];
S := series((1 + x^2)/(1-x-x^2 + x*y), x, 120):
for n from 1 to M do
R2 := expand(coeff(S, x, n));
R3 := [seq(abs(coeff(R2, y, n-i)), i=0..n)];
f := k-> add( R3[i]*k^(n-i+1), i=1..nops(R3) ):
s1 := [seq(f(i), i=1..3*n)];
s2 := BINOMIALi(s1);
s3 := [seq(s2[i], i=1..n+1)];
T := [op(T), op(s3)];
od:
T; # N. J. A. Sloane, Aug 12 2019
CROSSREFS
The leading column is A099425, and the rightmost two diagonals are A038720 and A000142.
Sequence in context: A070918 A113381 A228175 * A351385 A090665 A347952
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, May 07 2006
EXTENSIONS
Edited and extended by N. J. A. Sloane, Aug 12 2019, guided by the comments of R. J. Mathar from Oct 30 2011
STATUS
approved