login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118933
Triangle, read by rows, where T(n,k) = n!/(k!*(n-4*k)!*4^k) for n>=4*k>=0.
4
1, 1, 1, 1, 1, 6, 1, 30, 1, 90, 1, 210, 1, 420, 1260, 1, 756, 11340, 1, 1260, 56700, 1, 1980, 207900, 1, 2970, 623700, 1247400, 1, 4290, 1621620, 16216200, 1, 6006, 3783780, 113513400, 1, 8190, 8108100, 567567000, 1, 10920, 16216200, 2270268000, 3405402000
OFFSET
0,6
COMMENTS
Row n contains 1+floor(n/4) terms. Row sums yield A118934. Given column vector V = A118935, then V is invariant under matrix product T*V = V, or, A118935(n) = Sum_{k=0..n} T(n,k)*A118935(k). Given C = Pascal's triangle and T = this triangle, then matrix product M = C^-1*T yields M(4n,n) = (4*n)!/(n!*4^n), 0 otherwise (cf. A100861 formula due to Paul Barry).
FORMULA
E.g.f.: A(x,y) = exp(x + y*x^4/4).
EXAMPLE
Triangle begins:
1;
1;
1;
1;
1, 6;
1, 30;
1, 90;
1, 210;
1, 420, 1260;
1, 756, 11340;
1, 1260, 56700;
1, 1980, 207900;
1, 2970, 623700, 1247400; ...
MATHEMATICA
T[n_, k_]:= If[n<4*k, 0, n!/(4^k*k!*(n-4*k)!)];
Table[T[n, k], {n, 0, 20}, {k, 0, n/4}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
PROG
(PARI) T(n, k)=if(n<4*k, 0, n!/(k!*(n-4*k)!*4^k))
(Sage)
f=factorial;
flatten([[0 if n<4*k else f(n)/(4^k*f(k)*f(n-4*k)) for k in [0..n/4]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
(Magma)
F:= Factorial;
[n lt 4*k select 0 else F(n)/(4^k*F(k)*F(n-4*k)): k in [0..Floor(n/4)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
CROSSREFS
Cf. A118934 (row sums), A118935 (invariant vector).
Variants: A100861, A118931.
Sequence in context: A145629 A193633 A176289 * A046212 A120105 A120101
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, May 06 2006
STATUS
approved