login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118757
Permutation of the natural numbers such that the Levenshtein distance between decimal representations of successive terms is 1, and a(n+1) is the largest such m < a(n) if it exists, or else the smallest such m > a(n); a(0) = 0.
11
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 79, 78, 77
OFFSET
0,3
COMMENTS
a(n) = A003100(n) for n <= 100, a(100) = A003100(100) = 190, but a(101) = 180, A003100(101) = 191.
A118763 is the lexicographically smallest permutation with LevenshteinDistance[Base10](a(n),a(n+1)) = 1. - M. F. Hasler, Sep 12 2018
FORMULA
a(n+1) = if U(n) is empty then Min(V(n)) else Max(U(n)), where the sets U and V are defined as: U(m) = {x < a(m) : LD10(a(m),x) = 1 and a(k) <> x for 0 <= k < m}, V(m) = {x > a(m) | LD10(a(m),x) = 1 and a(k) <> x for 0 <= k < m} with LD10 = Levenshtein distance in decimal representations of natural numbers.
a(n) = A118758(n) (self-inverse) for n < 100.
CROSSREFS
Cf. A118763.
Iterated twice: A118759(n) := a(a(n)).
Fixed points: A118761 = { n | n = a(n) }.
Inverse: A118758.
First difference: A118762(n) := a(n+1) - a(n).
Sequence in context: A261725 A261729 A003100 * A118758 A174025 A106649
KEYWORD
nonn,base,look
AUTHOR
Reinhard Zumkeller, May 01 2006
EXTENSIONS
Correct definition and other edits by M. F. Hasler, Sep 12 2018
STATUS
approved