login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117852
Mirror image of A098473 formatted as a triangular array.
2
1, 2, 1, 6, 4, 1, 20, 18, 6, 1, 70, 80, 36, 8, 1, 252, 350, 200, 60, 10, 1, 924, 1512, 1050, 400, 90, 12, 1, 3432, 6468, 5292, 2450, 700, 126, 14, 1, 12870, 27456, 25872, 14112, 4900, 1120, 168, 16, 1, 48620, 115830, 123552, 77616, 31752, 8820, 1680, 216, 18, 1
OFFSET
0,2
FORMULA
Sum_{k=0..n} T(n,k)*x^k = A126869(n), A002426(n), A000984(n), A026375(n), A081671(n), A098409(n), A098410(n) for x = -2, -1, 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Sep 28 2007
T(n,k) = binomial(n,k)*A000984(n-k). - Philippe Deléham, Dec 12 2009
O.g.f.: 1/sqrt( (1 - x*t)*(1 - (x + 4)*t) ) = 1 + (2 + x)*t + (6 + 4*x + x^2)*t^2 + .... - Peter Bala, Nov 10 2013
EXAMPLE
Triangle begins:
1;
2, 1;
6, 4, 1;
20, 18, 6, 1;
70, 80, 36, 8, 1;
252, 350, 200, 60, 10, 1;
...
MAPLE
c:=n->binomial(2*n, n): T:=proc(n, k) if k<=n then binomial(n, k)*c(n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; #
MATHEMATICA
Table[ Binomial[n, k]*Binomial[2*n - 2*k, n - k], {n, 0, 10}, {k, 0, n} ] // Flatten (* G. C. Greubel, Mar 07 2017 *)
CROSSREFS
Cf. A098473.
Sequence in context: A094527 A054335 A110681 * A080245 A080247 A078937
KEYWORD
nonn,tabl
AUTHOR
Farkas Janos Smile (smile_farkasjanos(AT)yahoo.com.au), Dec 21 2006
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 12 2007
STATUS
approved