OFFSET
1,3
COMMENTS
Every palindrome with an even number of digits is divisible by 11 (in base 2), i.e., by 3 in base 10, and therefore is composite (not prime). Hence there is only one palindromic prime with an even number of digits, namely 11_2 = 3_{10}.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..76
Cécile Dartyge, Bruno Martin, Joël Rivat, Igor E. Shparlinski, and Cathy Swaenepoel, Reversible primes, arXiv:2309.11380 [math.NT], 2023. See p. 34.
Eric Weisstein's World of Mathematics, Palindromic Prime.
MATHEMATICA
Array[If[And[OddQ[#], # > 1], 0, Count[Prime@ Range[PrimePi[2^#] - Boole[# == 1] + 1, PrimePi[2^(# + 1) - 1]], _?(PalindromeQ[IntegerDigits[#, 2]] &)]] &, 25, 0] (* Michael De Vlieger, Sep 29 2023 *)
CROSSREFS
KEYWORD
nonn,base,changed
AUTHOR
Martin Renner, Apr 15 2006
EXTENSIONS
a(23)-a(40) from Donovan Johnson, Dec 02 2009
a(41)-a(66) from Martin Raab, Oct 20 2015
STATUS
approved