OFFSET
0,8
COMMENTS
It can be shown that, like the Fibonacci numbers, the tribonacci numbers are complete; that is, a(n)>0 for all n. There is always a representation, free of three consecutive tribonacci numbers, which is analogous to the Zeckendorf representation of Fibonacci numbers. See A003726.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Tribonacci Number.
Eric Weisstein's World of Mathematics, Zeckendorf Representation.
EXAMPLE
a(14)=2 because 14 is both 13+1 and 7+4+2+1.
MATHEMATICA
tr={1, 2, 4, 7, 13, 24, 44, 81, 149}; len=tr[[ -1]]; cnt=Table[0, {len}]; Do[v=IntegerDigits[k, 2, Length[tr]]; s=Dot[tr, v]; If[s<=len, cnt[[s]]++ ], {k, 2^(Length[tr])-1}]; cnt
PROG
(Haskell)
a117546 = p $ drop 3 a000073_list where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-- Reinhard Zumkeller, Apr 13 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
T. D. Noe and Jonathan Vos Post, Mar 28 2006
EXTENSIONS
a(0)=1 added and offset changed by Reinhard Zumkeller, Apr 13 2014
STATUS
approved