login
A117546
Number of representations of n as a sum of distinct tribonacci numbers (A000073).
9
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 2, 2, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 3, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2
OFFSET
0,8
COMMENTS
It can be shown that, like the Fibonacci numbers, the tribonacci numbers are complete; that is, a(n)>0 for all n. There is always a representation, free of three consecutive tribonacci numbers, which is analogous to the Zeckendorf representation of Fibonacci numbers. See A003726.
LINKS
Eric Weisstein's World of Mathematics, Tribonacci Number.
Eric Weisstein's World of Mathematics, Zeckendorf Representation.
EXAMPLE
a(14)=2 because 14 is both 13+1 and 7+4+2+1.
MATHEMATICA
tr={1, 2, 4, 7, 13, 24, 44, 81, 149}; len=tr[[ -1]]; cnt=Table[0, {len}]; Do[v=IntegerDigits[k, 2, Length[tr]]; s=Dot[tr, v]; If[s<=len, cnt[[s]]++ ], {k, 2^(Length[tr])-1}]; cnt
PROG
(Haskell)
a117546 = p $ drop 3 a000073_list where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-- Reinhard Zumkeller, Apr 13 2014
CROSSREFS
Cf. A000119 (number of representations of n as a sum of distinct Fibonacci numbers).
Cf. A240844.
Sequence in context: A185646 A037829 A270992 * A274196 A096811 A082478
KEYWORD
easy,nonn
AUTHOR
T. D. Noe and Jonathan Vos Post, Mar 28 2006
EXTENSIONS
a(0)=1 added and offset changed by Reinhard Zumkeller, Apr 13 2014
STATUS
approved