login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117293
Mersenne primes written in binary.
7
11, 111, 11111, 1111111, 1111111111111, 11111111111111111, 1111111111111111111, 1111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111111111
OFFSET
1,1
COMMENTS
The number of bits in a(n) is equal to A000043(n). - Omar E. Pol, Feb 22 2008
LINKS
FORMULA
a(n) = A007088(A000668(n)). - Amiram Eldar, Oct 22 2024
EXAMPLE
The third Mersenne prime is 31, i.e., 11111 in binary.
MATHEMATICA
Map[(10^# - 1)/9 &, MersennePrimeExponent[Range[9]]] (* Amiram Eldar, Oct 22 2024 *)
PROG
(PARI) apply(p->fromdigits(binary(p)), select(isprime, vector(20, n, 2^prime(n)-1))) \\ Charles R Greathouse IV, Sep 14 2016
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Jacob Vecht, Apr 23 2006
STATUS
approved