OFFSET
0,2
COMMENTS
Guttmann-Torrie simple cubic lattice series coefficients c_n^{2}(Pi). - N. J. A. Sloane, Jul 06 2015
LINKS
M. N. Barber et al., Some tests of scaling theory for a self-avoiding walk attached to a surface, 1978 J. Phys. A: Math. Gen. 11 1833.
Nathan Clisby, Andrew R. Conway and Anthony J. Guttmann, Three-dimensional terminally attached self-avoiding walks and bridges, J. Phys. A: Math. Theor., 49 (2016), 015004; arXiv:1504.02085 [cond-mat.stat-mech], 2015. [Warning: arXiv version has typos in a(11) and a(12).]
T. Dachraoui et al., Elementary paths in a cubic lattice and application to molecular biology, Kybernetes, Vol. 26 No. 9, pp. 1012-1030.
A. J. Guttmann and G. M. Torrie, Critical behavior at an edge for the SAW and Ising model, J. Phys. A 17 (1984), 3539-3552.
EXAMPLE
See A116903 for a graphical example of the bidimensional counterpart.
CROSSREFS
KEYWORD
nonn
AUTHOR
Giovanni Resta, Feb 15 2006
EXTENSIONS
a(16)-a(20) from Scott R. Shannon, Aug 12 2020
a(21)-a(26) from Clisby et al. added by Andrey Zabolotskiy, Apr 18 2023
STATUS
approved