login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of length n which avoid the patterns 321, 2134, 3412.
1

%I #14 Oct 12 2020 12:31:39

%S 1,2,5,12,22,32,42,52,62,72,82,92,102,112,122,132,142,152,162,172,182,

%T 192,202,212,222,232,242,252,262,272,282,292,302,312,322,332,342,352,

%U 362,372,382,392,402,412,422,432,442,452,462,472,482,492,502,512,522

%N Number of permutations of length n which avoid the patterns 321, 2134, 3412.

%H Colin Barker, <a href="/A116727/b116727.txt">Table of n, a(n) for n = 1..1000</a>

%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/maple/webbook/bookmain.html">Systematic Studies in Pattern Avoidance</a>, 2005.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F G.f.: x*(1 + 2*x^2 + 4*x^3 + 3*x^4) / (1 - x)^2.

%F For n >= 4, a(n) = 10*n - 28. - _Franklin T. Adams-Watters_, Sep 16 2006

%F a(n) = 2*a(n-1) - a(n-2) for n=5. - _Colin Barker_, Oct 24 2017

%t Join[{1, 2, 5}, LinearRecurrence[{2, -1}, {12, 22}, 100]] (* _Jean-François Alcover_, Oct 12 2020 *)

%o (PARI) Vec(x*(1 + 2*x^2 + 4*x^3 + 3*x^4) / (1 - x)^2 + O(x^70)) \\ _Colin Barker_, Oct 24 2017

%K nonn,easy

%O 1,2

%A _Lara Pudwell_, Feb 26 2006