login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of length n which avoid the patterns 231, 1423, 3214.
1

%I #31 Sep 08 2022 08:45:24

%S 1,2,5,12,26,52,98,177,310,531,895,1491,2463,4044,6611,10774,17520,

%T 28446,46136,74771,121116,196117,317485,513877,831661,1345862,2177873,

%U 3524112,5702390,9226936,14929790,24157221,39087538,63245319,102333451,165579399,267913515

%N Number of permutations of length n which avoid the patterns 231, 1423, 3214.

%H Colin Barker, <a href="/A116717/b116717.txt">Table of n, a(n) for n = 1..1000</a>

%H Michael Dairyko, Lara Pudwell, Samantha Tyner, Casey Wynn, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i3p22">Non-contiguous pattern avoidance in binary trees</a>. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.

%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/maple/webbook/bookmain.html">Systematic Studies in Pattern Avoidance</a>, 2005.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,1,2,-1).

%F G.f.: -x*(x^4-x^3-2*x^2+2*x-1) / ((x^2+x-1)*(x-1)^3).

%F a(n) = A000045(n+5) - A000124(n+2). - _Charlie Marion_ and _Lara Pudwell_, Jan 15 2014

%F From _Colin Barker_, Oct 20 2017: (Start)

%F a(n) = -3 + (2^(-1- n)*((1-sqrt(5))^n*(-11+5*sqrt(5)) + (1+sqrt(5))^n*(11+5*sqrt(5)))) / sqrt(5) - n - (1 + n)*(2 + n)/2.

%F a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5) for n>5.

%F (End)

%F a(n) = 1 + Sum_{k=1..n} Sum_{j=1..k} Sum_{i=1..j-1} Fibonacci(i). - _Ehren Metcalfe_, Oct 22 2017

%t LinearRecurrence[{4, -5, 1, 2, -1}, {1, 2, 5, 12, 26}, 40] (* _Vincenzo Librandi_, Oct 22 2017 *)

%o (PARI) Vec(x*(1 - 2*x + 2*x^2 + x^3 - x^4) / ((1 - x)^3*(1 - x - x^2)) + O(x^40)) \\ _Colin Barker_, Oct 20 2017

%o (Magma) I:=[1,2,5,12,26]; [n le 5 select I[n] else 4*Self(n-1)-5*Self(n-2)+Self(n-3)+2*Self(n-4)-Self(n-5): n in [1..40]]; // _Vincenzo Librandi_, Oct 22 2017

%K nonn,easy

%O 1,2

%A _Lara Pudwell_, Feb 26 2006