login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of length n which avoid the patterns 321, 2341, 4123.
2

%I #16 Oct 20 2017 14:37:04

%S 1,2,5,12,26,58,131,295,662,1487,3342,7510,16874,37915,85195,191432,

%T 430143,966522,2171756,4879892,10965017,24638169,55361464,124396081,

%U 279515456,628065528,1411250432,3171050937,7125286777,16010374058,35974983957,80835055196

%N Number of permutations of length n which avoid the patterns 321, 2341, 4123.

%H Colin Barker, <a href="/A116716/b116716.txt">Table of n, a(n) for n = 1..1000</a>

%H David Lonoff and Jonah Ostroff, <a href="https://www.math.upenn.edu/~lonoff/pdfs/spatp.pdf">Symmetric Permutations Avoiding Two Patterns</a>, Annals of Combinatorics 14 (1) pp.143-158 Springer, 2010; . - _N. J. A. Sloane_, Dec 27 2012

%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/maple/webbook/bookmain.html">Systematic Studies in Pattern Avoidance</a>, 2005.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,1,1,-1).

%F G.f.: x*(1 + x)*(1 - x + 2*x^2 - x^3) / ((1 + x^2)*(1 - 2*x - x^2 + x^3)).

%F a(n) = 2*a(n-1) + a(n-3) + a(n-4) - a(n-5) for n>5. - _Colin Barker_, Oct 20 2017

%o (PARI) Vec(x*(1 + x)*(1 - x + 2*x^2 - x^3) / ((1 + x^2)*(1 - 2*x - x^2 + x^3)) + O(x^40)) \\ _Colin Barker_, Oct 20 2017

%K nonn,easy

%O 1,2

%A _Lara Pudwell_, Feb 26 2006