OFFSET
1,1
COMMENTS
Eight sets of integers (this, A116610 and A116612-A116617), dealing with the remainder classes {1,5,7,11} modulo 12 are inspired by the Taylor series of sin(x) = x-x^3/3!+x^5/5!-... and cos(x)=1-x^2/2!+x^4/4!-x^6/6!+... which might be constructed via partitioning of the series terms according to factorial denominators of 2n+1 = 1,3,5,7,.. and 2n=1,2,4,6,...
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
FORMULA
EXAMPLE
33 is in the sequence because the 66th prime is 317 and 317 mod 12=5.
MAPLE
a:=proc(n) if ithprime(2*n) mod 12 = 5 then n fi end: seq(a(n), n=1..220);
MATHEMATICA
a[1] = Flatten[Table[If[Mod[Prime[2*n], 12] == 5, n, {}], {n, 1, 100}]]
Select[Range[210], Mod[Prime[2#], 12]==5&] (* Harvey P. Dale, Apr 12 2018 *)
PROG
(PARI) for(n=1, 999, prime(2*n)%12==5 & print1(n", ")) \\ M. F. Hasler, May 22 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 29 2006
EXTENSIONS
Edited by N. J. A. Sloane, Apr 05 2006, May 22 2009
STATUS
approved