OFFSET
1,3
COMMENTS
a(n)=sum(k*A116464(n,k), k>=1).
FORMULA
G.f.=sum(2ix^(4i^2+2i)/[product(1-x^(2j),j=1..2i)product(1-x^(2j-1),j=1..i)], i=1..infinity)+ sum((2i-1)x^((2i-1)^2)/[product(1-x^(2j),j=1..2i-1)product(1-x^(2j-1),j=1..i)],i=1..infinity).
EXAMPLE
a(7)=6 because the partitions of 5 into odd parts are [7], [5,1,1], [3,3,1],
[3,1,1,1,1] and [1,1,1,1,1,1,1], having Durfee squares of sizes 1, 1, 2, 1 and 1, respectively.
MAPLE
g:=sum(2*i*x^(4*i^2+2*i)/product(1-x^(2*j), j=1..2*i)/product(1-x^(2*j-1), j=1..i), i=1..30)+ sum((2*i-1)*x^((2*i-1)^2)/product(1-x^(2*j), j=1..2*i-1)/product(1-x^(2*j-1), j=1..i), i=1..30): gser:=series(g, x=0, 62): seq(coeff(gser, x^n), n=1..60);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch and Vladeta Jovovic, Feb 18 2006
STATUS
approved