Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 06 2023 03:21:45
%S 1,1,1,3,6,5,30,105,140,126,1260,1155,13860,12870,12012,9009,72072,
%T 68068,1225224,5819814,5542680,5290740,116396280,111546435,535422888,
%U 514829700,1487285800,1434168450,5736673800,5545451340,166363540200,644658718275,312561802800
%N Denominator of rational part of raw moment n of the line point picking problem.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LinePointPicking.html">Line Point Picking</a>
%F a(n) = denominator of 1 + (2*n)*Sum_{k = 1..n} (-1)^(n+k+1)/k. - _Peter Bala_, Jan 05 2023
%F a(n) = denominator of 2*n*((-1)^n*log(2) - LerchPhi(-1, 1, n + 1)) + 1. - _Peter Luschny_, Jan 05 2023
%e -1 + 2*log(2), 3 - 4*log(2), -4 + 6*log(2), 17/3 - 8*log(2), -41/6 + 10*log(2), ...
%p a := n -> denom(1 + 2*n*add((-1)^(n+k+1)/k, k = 1..n)):
%p seq(a(n), n = 1..30); # _Peter Bala_, Jan 05 2023
%p # Alternative:
%p a := n -> 2*n*((-1)^n*log(2) - LerchPhi(-1, 1, n + 1)) + 1:
%p seq(denom(simplify(a(n))), n = 1..33); # _Peter Luschny_, Jan 05 2023
%Y Cf. A058312, A058313, A115388.
%K nonn,frac,easy
%O 1,4
%A _Eric W. Weisstein_, Jan 21 2006