login
A115375
<h[d,d],s[d,d]*s[d,d]*s[d,d]> where h[d,d] is a homogeneous symmetric function, s[d,d] is a Schur function indexed by two parts, * represents the Kronecker product and <, > is the standard scalar product on symmetric functions.
2
1, 1, 4, 5, 12, 15, 30, 37, 65, 80, 128, 156, 234, 282, 402, 480, 657, 777, 1030, 1207, 1558, 1811, 2286, 2637, 3267, 3742, 4562, 5192, 6242, 7062, 8388, 9438, 11091, 12417, 14454, 16107, 18592, 20629, 23632, 26117, 29715, 32718, 36996, 40594
OFFSET
0,3
REFERENCES
M. W. Hero and J. F. Willenbring, Stable Hilbert series as related to the measurement of quantum entanglement, Discrete Math., 309 (2010), 6508-6514.
LINKS
FORMULA
G.f.: (1 - x^2 + x^4) / ((1 - x)^6*(1 + x)^4*(1 + x + x^2)).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 7*a(n-4) + 2*a(n-5) + 8*a(n-6) + 2*a(n-7) - 7*a(n-8) - 3*a(n-9) + 4*a(n-10) + a(n-11) - a(n-12) for n>11. - Colin Barker, May 10 2019
PROG
(PARI) Vec((1 - x^2 + x^4) / ((1 - x)^6*(1 + x)^4*(1 + x + x^2)) + O(x^40)) \\ Colin Barker, May 10 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mike Zabrocki, Jan 21 2006
STATUS
approved