login
A115335
a(0) = 3, a(1) = 5, a(2) = 1, and a(n) = (2^(1 + n) - 11*(-1)^n)/3 for n > 2.
4
3, 5, 1, 9, 7, 25, 39, 89, 167, 345, 679, 1369, 2727, 5465, 10919, 21849, 43687, 87385, 174759, 349529, 699047, 1398105, 2796199, 5592409, 11184807, 22369625, 44739239, 89478489, 178956967, 357913945, 715827879, 1431655769, 2863311527, 5726623065, 11453246119
OFFSET
0,1
FORMULA
a(n) = 2*abs((1/2)*(-1 + (-2)^n) - (2/3)*(2 + (-2)^n)*A057427(n)).
From Colin Barker, Jan 04 2013: (Start)
a(n) = a(n-1) + 2*a(n-2) for n > 4.
G.f.: (4*x^4 + 2*x^3 + 10*x^2 - 2*x - 3) / ((x + 1)*(2*x - 1)). (End)
E.g.f.: (18 + 3*x^2 - 11*exp(-x) + 2*exp(2*x))/3. - Franck Maminirina Ramaharo, Nov 23 2018
MAPLE
seq(coeff(series((4*x^4+2*x^3+10*x^2-2*x-3)/((x+1)*(2*x-1)), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Nov 23 2018
MATHEMATICA
Join[{3, 5, 1}, LinearRecurrence[{1, 2}, {9, 7}, 40]] (* Harvey P. Dale, Jul 17 2014 *)
PROG
(Maxima) append([3, 5, 1], makelist((2^(1 + n) - 11*(-1)^n)/3, n, 3, 40)) /* Franck Maminirina Ramaharo, Nov 23 2018*/
(PARI) x='x+O('x^50); Vec((4*x^4+2*x^3+10*x^2-2*x-3)/((x+1)*(2*x-1))) \\ G. C. Greubel, Nov 23 2018
(Magma) I:=[9, 7]; [3, 5, 1] cat [n le 2 select I[n] else Self(n-1) + 2*Self(n-2): n in [1..45]]; // G. C. Greubel, Nov 23 2018
(Sage) s=((4*x^4+2*x^3+10*x^2-2*x-3)/((x+1)*(2*x-1))).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 23 2018
(GAP) a:=[3, 5, 1];; for n in [4..35] do a[n]:=(2^n-11*(-1)^(n-1))/3; od; a; # Muniru A Asiru, Nov 23 2018
CROSSREFS
Cf. A115113, A115164, A163868 (bisection).
Sequence in context: A328013 A241674 A021970 * A214062 A054586 A214229
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Mar 06 2006
EXTENSIONS
a(24) corrected, new name, and editing by Colin Barker and Joerg Arndt, Jan 04 2013
STATUS
approved