login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115257
Partial sums of binomial(2n,n)^2.
4
1, 5, 41, 441, 5341, 68845, 922621, 12701245, 178338145, 2542242545, 36677022081, 534311328705, 7846771001041, 116019251361041, 1725360846921041, 25786805857871441, 387084441100423541, 5832802431123111941
OFFSET
0,2
COMMENTS
Central coefficients of number triangle A115255.
p divides all a(n) from a((p-1)/2) to a(p-1) for Gaussian primes p=7,23,31,79,167,431,479,983, ... of the form 4n+3, A002145(n) and for primes of the form 8n+7, A007522(n). - Alexander Adamchuk, Jul 05 2006
Conjecture: For any positive integer n, the polynomials Sum_{k=0}^n binomial(2k,k)^2*x^k and Sum_{k=0}^n binomial(2k,k)^2*x^k/(k+1) are irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 23 2013
LINKS
DLMF Digital Library of Mathematical Functions, Elliptic Integrals, NIST, 2016.
FORMULA
a(n) = Sum_{k=0..n} C(2k, k)^2. a(n) = A115255(2n, n).
a(n) = C(2n,n)^2 + C(2n-2,n-1)^2 + ... + C(2k,k)^2 + ... + C(2,1)^2 + C(0,0)^2, where C(2k,k) = (2k)!/(k!)^2 are the central binomial coefficients A000984(k). - Alexander Adamchuk, Jul 05 2006
a(n) = Sum_{k=0..n} ((2k)!/(k!)^2)^2. a(n) = Sum_{k=0..n} A000984[k]^2. - Alexander Adamchuk, Jul 05 2006
Recurrence: n^2*a(n) = (17*n^2-16*n+4)*a(n-1) - 4*(2*n-1)^2*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 16^(n+1)/(15*Pi*n). - Vaclav Kotesovec, Oct 19 2012
From Emanuele Munarini, Oct 28 2016: (Start)
Let K(x) be the complete elliptic integral of the first kind as defined in [DLMF, 19.2.4] for phi = Pi/2.
a(n) = (2/Pi)*K(16)-((16^(n+1)*Gamma(n+3/2)^2)/(Pi*Gamma(n+2)^2))*hypergeometric (1,n+3/2,n+3/2;n+2,n+2;16).
G.f.: A(t) = (2/Pi)*(K(16*t)/(1-t)).
Diff. eq. satisfied by the g.f. t*(1-17*t+16*t^2)*A''(t)+(1-35*t+64*t^2)*A'(t)-(5-36*t)*A(t)=0. (End)
MAPLE
series( 2*EllipticK(4*x^(1/2))/(Pi*(1-x)) , x=0, 20); # Mark van Hoeij, Apr 06 2013
MATHEMATICA
Table[Sum[((2k)!/(k!)^2)^2, {k, 0, n}], {n, 0, 40}] (* Alexander Adamchuk, Jul 05 2006 *)
Accumulate[(Binomial[2#, #])^2&/@Range[0, 20]] (* Harvey P. Dale, Mar 04 2011 *)
PROG
(Maxima) makelist(sum(binomial(2*k, k)^2, k, 0, n), n, 0, 12); /* Emanuele Munarini, Oct 28 2016 */
(PARI) a(n) = sum(k=0, n, binomial(2*k, k)^2); \\ Michel Marcus, Oct 30 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 18 2006
STATUS
approved