Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Mar 10 2022 05:54:15
%S 1,13,123,1037,8291,64509,494595,3761661,28486659,215277565,
%T 1625688067,12277764093,92783468547,701828038653,5314762113027,
%U 40297495658493,305941006516227,2325794003091453,17704219384479747
%N Seventh column of triangle A115193 (called C(1,2)).
%C Also sixth diagonal of triangle A115195, called Y(1,2), divided by 32.
%H G. C. Greubel, <a href="/A115204/b115204.txt">Table of n, a(n) for n = 0..500</a>
%F a(n) = A115195(5+n,1+n)/32, n>=0.
%F G.f.: (-1 + 7*x - 8*x^2 + (1- 9*x + 18*x^2 - 4*x^3)*c(2*x))/(16*(1+x)*x^5), with the o.g.f. c(x) of A000108 (Catalan).
%F G.f. is also: ((1 + 2*x*c(2*x))*(2*x*c(2*x))^6)/(64*(1+x)*x^6).
%F a(n) = A115193(6+n,6), n>=0.
%F a(n) = (-1)^n*2^(8+3*n)*(Binomial[1/2, 4 + n]*Hypergeometric2F1[1, 7/2 + n, 5 + n, -8] + 4*(9*Binomial[1/2, 5 + n]*Hypergeometric2F1[1, 9/2 + n, 6 + n, -8] + 36*Binomial[1/2, 6 + n]*Hypergeometric2F1[1, 11/2 + n, 7 + n, -8] + 32*Binomial[1/2, 7 + n]*Hypergeometric2F1[1, 13/2 + n, 8 + n, -8])). - _G. C. Greubel_, Feb 04 2016
%F D-finite with recurrence 2*n*(n+6)*a(n) +(-11*n^2-51*n-120)*a(n-1) +(-37*n^2-99*n-132)*a(n-2) -12*(n+1)*(2*n+1)*a(n-3)=0. - _R. J. Mathar_, Mar 10 2022
%t f[n_] := SeriesCoefficient[(1 - 13*x + 46*x^2 - 36*x^3 -(1 - 9*x + 18*x^2 - 4*x^3) Sqrt[1 - 8*x])/(64*x^6*(1 + x)), {x, 0, n}];
%t Table[f[n], {n, 0, 50}] (* _G. C. Greubel_, Feb 04 2016 *)
%Y Cf. A000108, A115202, A115203.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Feb 03 2006