login
A114717
Number of linear extensions of the divisor lattice of n.
12
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 5, 1, 2, 2, 1, 1, 5, 1, 5, 2, 2, 1, 14, 1, 2, 1, 5, 1, 48, 1, 1, 2, 2, 2, 42, 1, 2, 2, 14, 1, 48, 1, 5, 5, 2, 1, 42, 1, 5, 2, 5, 1, 14, 2, 14, 2, 2, 1, 2452, 1, 2, 5, 1, 2, 48, 1, 5, 2, 48, 1, 462, 1, 2, 5, 5, 2, 48, 1, 42, 1, 2, 1, 2452, 2, 2, 2, 14, 1, 2452, 2
OFFSET
1,6
COMMENTS
Notice that only the powers of the primes determine a(n), so a(12) = a(75) = 5.
For prime powers, the lattice is a chain, so there is 1 linear extension.
a(p^1*q^n) = A000108(n+1), the Catalan numbers.
Alternatively, the number of ways to arrange the divisors of n in such a way that no divisor has any of its own divisors following it. E.g., for 12, the following five arrangements are possible: 1,2,3,4,6,12; 1,2,3,6,4,12; 1,2,4,3,6,12; 1,3,2,4,6,12 and 1,3,2,6,4,12. But 1,2,6,4,3,12 is not possible because 3 divides 6 but follows it. Thus a(12)=5. - Antti Karttunen, Jan 11 2006
For n = p1^r1 * p2^r2, the lattice is a grid (r1+1)*(r2+1), whose linear extensions are counted by ((r1+1)*(r2+1))!/Product_{k=0..r2} (r1+1+k)!/k!. Cf. A060854.
REFERENCES
R. Stanley, Enumerative Combinatorics, Vol. 2, Proposition 7.10.3 and Vol. 1, Sec 3.5 Chains in Distributive Lattices.
LINKS
Graham Brightwell and Peter Winkler, Counting linear extensions, Order 8 (1991), no. 3, 225-242.
Gary Pruesse and Frank Ruskey, Generating linear extensions fast, SIAM J. Comput. 23 (1994), no. 2, 373-386.
MAPLE
with(numtheory):
b:= proc(s) option remember;
`if`(nops(s)<2, 1, add(`if`(nops(select(y->
irem(y, x)=0, s))=1, b(s minus {x}), 0), x=s))
end:
a:= proc(n) local l, m;
l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]);
m:= mul(ithprime(i)^l[i][2], i=1..nops(l));
b(divisors(m) minus {1, m})
end:
seq(a(n), n=1..100); # Alois P. Heinz, Jun 29 2012
MATHEMATICA
b[s_List] := b[s] = If[Length[s]<2, 1, Sum[If[Length[Select[s, Mod[#, x] == 0 &]] == 1, b[Complement[s, {x}]], 0], {x, s}]]; a[n_] := Module[{l, m}, l = Sort[ FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]}]; b[Divisors[m] // Rest // Most]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 28 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Mitch Harris and Antti Karttunen, Dec 27 2005
STATUS
approved