login
A114604
Numerator of partial sums of A005329/A006125.
3
1, 5, 43, 709, 23003, 1481957, 190305691, 48796386661, 25003673060507, 25613941912987493, 52467767892904362139, 214929296497738201165669, 1760788099067877263041671323, 28849467307107603960961499533157
OFFSET
0,2
COMMENTS
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. The probability of having won before n+1 tails (that is, winning by flipping n+1 or fewer heads in a row) is a(n)/A006125(n). The probability of winning for the first time after n tails (that is, by flipping n+1 heads in a row) is A005329(n)/A006125(n).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..80
Johann Cigler, Hankel determinants of backward shifts of powers of q, arXiv:2407.05768 [math.CO], 2024. See p. 4.
FORMULA
a(n) = numerator(Sum_{k=0..n} A005329(k)/A006125(k)).
a(n) = a(n-1) * 2^(n+1) + A005329(n).
EXAMPLE
a(3) = 43 because 1/2 + 1/8 + 3/64 = 43/64, or because a(2) * 2^(2+1) + A005329(2) = 5 * 8 + 3 = 43.
MATHEMATICA
Nest[Append[#1, #1[[-1]]*2^(#2 + 1) + Product[2^i - 1, {i, #2}]] & @@ {#, Length[#]} &, {1}, 13] (* Michael De Vlieger, Jul 15 2024 *)
CROSSREFS
Sequence in context: A280776 A255895 A160450 * A085098 A271679 A350875
KEYWORD
easy,frac,nonn
AUTHOR
Joshua Zucker, Dec 14 2005
STATUS
approved