login
A114500
Number of Dyck paths of semilength n having no UUUDDD's starting at level zero; here U=(1,1), D=(1,-1). Also number of Dyck paths of semilength n having no UUDUDD's starting at level zero.
2
1, 1, 2, 4, 12, 37, 119, 390, 1307, 4460, 15452, 54207, 192170, 687386, 2477810, 8992007, 32825653, 120460613, 444125661, 1644324767, 6111002752, 22789116600, 85251100275, 319826371389, 1203008722282, 4536009027311, 17141555233270
OFFSET
0,3
COMMENTS
Column 0 of A114499.
LINKS
FORMULA
G.f.: 1/(1 - z*C + z^3), where C = (1-sqrt(1-4*z))/(2*z) is the Catalan function.
a(n) ~ 4^(n+5)/(1089*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence +(n+1)*a(n) +2*(-2*n+1)*a(n-1) +(n+1)*a(n-2) +2*(-2*n+1)*a(n-3) +(n+1)*a(n-5) +2*(-2*n+1)*a(n-6)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(4)=12 because among the 14 Dyck paths of semilength 4 only UDUUUDDD and UUUDDDUD contain UUUDDD starting at level 0.
MAPLE
C:=(1-sqrt(1-4*z))/2/z: G:=1/(1-z*C+z^3): Gser:=series(G, z=0, 35): 1, seq(coeff(Gser, z^n), n=1..30);
MATHEMATICA
CoefficientList[Series[1/(1-x*(1-Sqrt[1-4*x])/2/x+x^3), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) my(x='x+O('x^50)); Vec(2/(1+sqrt(1-4*x)+2*x^3)) \\ Jason Yuen, Sep 09 2024
CROSSREFS
Cf. A114499.
Sequence in context: A275539 A356062 A193049 * A148212 A139627 A361720
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 04 2005
STATUS
approved