OFFSET
1,2
COMMENTS
More generally for any n>=floor((m+1)/2) the trace of M(n)^(-m) = binomial(2*m,m)*n-2^(2*m-1)+binomial(2*m-1,m).
LINKS
FORMULA
a(n) = 48620n-106762, with n>4, a(1)=1, a(2)=5778, a(3)=40169, a(4)=87727.
From Colin Barker, Mar 18 2012: (Start)
a(n) = 2*a(n-1)-a(n-2) for n>6.
G.f.: x*(1+5776*x+28614*x^2+13167*x^3+1053*x^4+9*x^5)/(1-x)^2. (End)
MATHEMATICA
Rest@ CoefficientList[Series[x (1 + 5776 x + 28614 x^2 + 13167 x^3 + 1053 x^4 + 9 x^5)/(1 - x)^2, {x, 0, 30}], x] (* Michael De Vlieger, Feb 22 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Feb 09 2006
STATUS
approved