login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113999
a(n) = Sum_{ k, k|n } 10^(k-1).
11
1, 11, 101, 1011, 10001, 100111, 1000001, 10001011, 100000101, 1000010011, 10000000001, 100000101111, 1000000000001, 10000001000011, 100000000010101, 1000000010001011, 10000000000000001, 100000000100100111
OFFSET
1,2
COMMENTS
A034729 to base 2. Stacking elements of the sequence gives A113998.
LINKS
FORMULA
G.f.: Sum_{n>0} x^n/(1-10*x^n).
a(n) ~ 10^(n-1). - Vaclav Kotesovec, Jun 05 2021
MATHEMATICA
A113999[n_]:= DivisorSum[n, 10^(#-1) &];
Table[A113999[n], {n, 40}] (* G. C. Greubel, Jun 26 2024 *)
PROG
(PARI) a(n)=if(n<1, 0, sumdiv(n, k, 10^(k-1)));
(Magma)
A113999:= func< n | (&+[10^(d-1): d in Divisors(n)]) >;
[A113999(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
(SageMath)
def A113999(n): return sum(10^(k-1) for k in (1..n) if (k).divides(n))
[A113999(n) for n in range(1, 41)] # G. C. Greubel, Jun 26 2024
CROSSREFS
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), this sequence (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).
Sequence in context: A284235 A284299 A284347 * A283062 A282959 A284142
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 12 2005
STATUS
approved